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I. Phys. A Math. Gen. 25 (1992) 485-494. h in ted  in the UK 

Yang-Baxter matrices and differential calculi on 
quantum hyperplanes 

Ladislav HlavatL 
Institute of Physics, Czechoslovak Academy of Sciences, Na Slavance 2, 180 40 Prague 8, 
Czechoslovakia 

Abstract. It is shown that any invertible matrix R that solves the Yang-Baxter equations 
giniiaiis I set of q-afii-ilm hyperp:aoes where diiicicrrtiai cztceti can be defined. ?kc 
number of such quantum hyperplanes is given by the number of different eigenvalues of 
the matrix R Several examples of two-dimensional quantum hyperplanes and differential 
calculi are presented. The relations of quantum hyperplanes and differential calculi are 
covariant WRT the quantum groups defined by the matrix R. In the generic cases the 
exterior differential satisfies the condition d'=O. 

1. Introduction 

Recently, Wess and Zumino developed a differential calculus on quantum hyperplanes 
covariant W R T G L ~ (  N )  [ 11. They derived general constraints for matrices that determine 
commutation relations for variables, differentials and derivatives and found a solution 
of these constraints corresponding to the well-known quantum hyperplane given by 
the relations 

i, j = 1, . , , , n i < j  q E C .  (1.1) = q x J x i  

In this paper we are going to show that any invertible matrix that solves the 
Yang-Baxter equation (YBE) 

R!2R23R12 = R23R!2R23 ( 1.2) 

(braid group relations) can be used for definition of quantum hyperplanes and differen- 
tial calculi on them. We are going to present examples of such quantum hyperplanes 
and differential calculi. 

Wess and Zumino considered quantum hyperplanes generated by n variables 
XI,. . . , X" that satisfy quadratic relations (see also [Z] and [3]) 

(1.3) r4, (x) :=x'xl -Bb Xi i- 
XI x - o  

or, symbolically, 

r , 2 ( x )  := x,x2- B 1 2 x , x 2 = 0  ( 1.4) 
where E,? = {Byk! }  is a matrix with n 2  x n 2  elements in a field, e.g. in @. They introduce 
differentials 6' (c '=dx ' )  and derivatives J j  (a&'= 8';) and require that the exterior 
differential 

d := ('af (1.5) 

satisfies the Leibnitz rule 

d ( f g )  = ( d f ) g + f ( d g )  
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486 L Hlavaf9 

for arbitrary functionsf and g of x (i.e. for arbitrary elements of the quadratic algebra). 
Also, they assume commutation relations of variables and differentials in the form 

(1.7) = cfklpxl 
where C is again a matrix with n 2  x n2 numeric elements. 

The Leibnitz rule then gives the commutation relations for J and x, 

J . x ' = ~ ' . + C ' k . x ' J k  ,I (1.8) 
and two conditions for the matrices B and C, 

(E,Z-B12)(E,l+C12) = o  (1.9) 

(E12-B12)C23C12x2x3 = o  (1.10) 

where E is the n 2  x n 2  unit matrix. The latter condition can be satisfied by the equation 

B12C23C12 = C23C12B23 (1.11) 

(even though weaker constraints can be required). 
The algebra of xi, e and a, can be completed by relations 

(1.12) 

(1 .13)  

The consistency checks of (1.7), (1.8), (1.12) and (1.13) yield 

cIZc23 c12 = c23C82c23 (1.14) 

(E12+CI*)(EIZ-F12)=O (1.15) 

J ~ J ~ C I ~ C Z ( E I ~ -  F12) = O .  (1.16) 

Due to (1.13), the latter relation can be satisfied if 

C12C23Fn = F 2 3 c , 2 C 2 3 .  (1.17) 

Wess and Zumino solved constraints (1.9), (1.11), (l.14), (1.15) and (1.17) by B, 
C, F, which are multiples of a special matrix that satisfies the YBE. In the next section 
we are going to present more general solutions of the Constraints. 

Let us note that the condition d 2  = 0 was not used in the derivation of the constraints. 

2. Solution of the constraints 

Suppose that we have an invertible matrix R = {R",,} with n2 x n 2  complex entries that 
solves the YBE (1.2). Let the minimal polynomial M ( x )  of the matrix R be of degree 
m, i.e. 

(2.1) ( m s n ) .  2 M ( R )  := ( R  - A l ) ( R  - A 2 )  . , . ( R  -A,,,) = O  

(The roots of the polynomial M are equal to the eigenvalues of R but their multiplicities 
may differ.) Then it is easy to show that, for k = 1,.  . . , m, the matrices 

C = C k ( R ) = - R I A ,  B = B k ( R )  = E - M k ( R ) / K ,  F = B  (2.2) 

where 

M,(x):= ( x - A ~ ) - ' M ( x )  K * =  Il (-4) (2.3) 
IC* 
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( K h  areconvenient normalization coesfcients) satisfy the constraints (1.9), ( l . l l ) ,  (1.141, 
(1.15) and (1.17). 

The constraint (1.14) is equivalent to the YBE for R.  Equations (1.9) and (1.15) are 
satisfied due to (2.1). Constraints ( 1 . 1 1 )  and (1.17) are satisfied due to the fact that 
B k ( R )  and F k ( R )  are polynomials in R and any polynomial P solves the equation 

as a corollary of the YBE. 

any C and F we get, from ( l S ) ,  (1.12) and (1.7), 
Moreover, $ A k  is a simple root of the minimal polynomial then d 2  = 0. Indeed, for 

so that if Aj  # Ak for j # k then d'= 0. 
Let us note that the matrices E - B h ( R ) ,  which are used for the definition of the 

quantum hyperplanes, are nilpotent or proportional to projectors on the subspaces of 
eigenvectors corresponding to A h .  Indeed, if j #  k then, due to (2.1), one gets 

(2.7) 

If A, = Ak for some j # If, i.e. if A k  is a multiple root of M, then the matrix E - B k ( R )  
is nilpotent. If A x  is a simple root of M then E - B , ( R )  is proportional to the projector 
(onto the subspace of eigenvectors of R with eigenvalue A k )  because 

( E  - B k ( R ) ) ( E  - B j ( R ) )  = 0 .  

Moreover, if all roots of M are simple then 

m 

( E - B h ( R ) )  n ( ~ - A ~ / A , ) - ' = I .  (2.9) 
k = I  d # h  

By this method we obtain a good construction of quantum hyperplanes Q h ( R )  with 
differential calculi. The only ingredient we need is a matrix R satisfying the YBE. 
Actually, for a given R we have a whole class of quantum hyperplanes and differential 
ca!cu!i bececse the YBE; err invariant WRT the fn!!owing !ransformations: 

R - ~ = ( A o A ) R ( A o A ) - ~  A E C L ( n )  (2.10) 

R -  R + =  PRP (2.11) 

R + R -  = R - I  (2 .12)  

where P", = S',S',. The quantum hyperplanes corresponding to are given by the 
quadratic relations obtained from those corresponding to R by the transformations 
xi + A>.x'. The quantum hyperplanes corresponding to R' are obtained similarly by 
xk'+xjx'.  The role of the last symmetry will be discussed later. 

Let us investigate the special cases m = 1.2. 
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Let m = 1. Then R = AE, B = F = 0, C = -E and the relations for variables, differen- 

xlx'=O X'p =-ex '  (2.13) 

J,X' = 6;(1- x'a,) a,[' = -s;c'a, a,a, =o. (2.14) 

tials and derivatives are 

Note that in this trivial case there are no quadratic relations for differentials #'. 
Let m = 2. Then the matrix R satisfies the Hecke condition 

R =  = u~ + p (2.15) 

and the quantum hyperplanes and the differential calculi are given by 

(2.16) 

(2.17) 

Note that the commutation relations for variables in one quantum hyperplane 
(given by Bi)  are the same as commutation relations for differentials (given by C.) in 
the other. 

Another remarkable fact is that if A ,  + A> # 0 then there are (at least) two different 
differential calculi for one quantum hyperplane. Indeed, if R is a solution of the YBE 
then, as mentioned above, R-' is also a solution and the corresponding quantum 
hyperplanes and differential calculi are defined by 

B,(R-') = B;'(R) C;(R-') = CI1(R) F,(R-')= FF'(R). (2.18) 

The quantum hyperplane defined by a matrix E;' is identical with that defined by Bi .  
However, the differential calculi are different except for the case when C, = CY', i.e. 

If the minimal polynomial of a solution of the YBE is of degree higher than two 
then the above given construction of the differential calculi is not applicable to all 
quantum hyperplanes that can be obtained from the solution. The reason is that any 
product (R -Ac , )  . . . ( R  -Ain),  n < m, i, # i, where At, are roots of the minimal poly- 
nomial, defines a quantum hyperplane [ 5 ] ;  however, the construction works only for 
the hyperplanes given by M,(R). Definition of the differential calculi on the other 
hyperplanes is an open problem. 

In the next section we shall give examples of quantum hyperplanes where the 
described construction of differential calculi can be applied. 

R~ = A:. 

3. Two-dimensional examples 

In a previous paper [4] we gave a list of eight (and less) vertex solutions of the YBE. 

In [ 5 ] ,  the two-dimensional quantum hyperplanes obtainable from these solutions, i.e. 
associative quadratic algebras [2,3] 

@(R) :=C(X', x2)/f(R)(x@x) (3.1) 

where f is a singular polynomial of R, were presented. We can use the above given 
prescription for B, C, F to define the differential calculi on many of these spaces. 
Below we shall show several illustrative examples. The number of the R-matrices 
r,.rrpr..n..~l r c i  .,-A - I = _  ..2= ., cl= c c2= - 
'"L.bq,",L"" I" L d J  Y.L" n - n, rr - J,  5 - b. 3 - 'I' 
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(i) The two-parametric generalization of the example in [ l ] .  Let 

/4 0 0 o\  
0 q - 1  q f  0 I 0 1 0 0  

R = R 5 =  

(See also [6-81.) 
The minimal polynomial for R,  is of second order, 

( R ,  - q)(R,+  t )  = 0. (3.3). 

so that the quantum hyperplanes Q,(R , ) ,  corresponding to B, (R , )  i =  1,2  and the 
corresponding differential calculi are given by matrices (2.15) and (2.16). The relations 
(1.3), (1.7).  (1.8), (1.12) and (1.13) then read 

( q - i i ) x 2 = o  ( q  - i Jy2 = 0 x y = , i y x  (3.4) 

( 9  -Ai)( '=  0 ( q  - Ai)vz = 0 6v = (3.5) 

( 9  - 1 , ) J :  = O  ( q  - K,)a; = o  a , J ,  = - A I J , J ,  (3.6) 

Aix( = -q(X A#v=-qvY  
(3.7) 

= S Y ( t - q ) - q f v x  A#(= -0 
J J =  i - ~ ; ' [ q x a , + ( q - t ) y a , ]  J y  = -AT' I Y J ,  

(3.8) 
a+ = -A:' , qtxa, 

Jx(  = -A,q-'(J, 

J J  = - A i  (ay = ~ ~ [ ( i - ' - q ~ ' ) ( a , - q - ' v a ~ ]  

a,y = 1 -A;'qyay 

~~7 = -A,q- ' f - 'TJx 
(3.9) 

where A , = x 2 = - f ,  A 2 = i I = q .  
One can see from (3.4) that the quantum hyperplane Q I ( R , )  is given by the 

well-known relation xy = qyx. On the other hand, Q2(R5)  in the generic case q # -f ,  
is a four-dimensional algebra with the basis 1,  x, y, xy = -tyx. 

Note that even though the quantum hyperplanes are given by only one of the 
parameters q, f the formulae for the differential calculi also contain the other one. It 
means that, in the generic cases q # - r ,  one-parametric sets of differential calculi can 
be defined on both the quantum hyperplanes Qj( R,) .  The differential calculus presented 
in [ l ]  is obtained for f = l / q .  

If q = - f  then the matrix R ,  determines just one differential calculus on Q,(R , )  = 

Q A R J .  
The bases in the quantum hyperplanes are formed by the monomials y"x" where 

n, mENo:={0,1,2 ,... } for A ,  and n, mE{O,1)  for A 2 # A l .  If q = - 1  then n, m c N o .  
The derivatives of the basis elements are 

(3.10) 

where 

G,(x) :=  (1  - x " ) / ( l  - x ) .  (3.11) 
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As R(q ,  t ) - ' =  PR(q-' ,  t-')P, the formulae for the alternative differential calculi 
corresponding to R-' can be obtained by q - l / q ,  t + 1 / 1  and wz+zw, where w, 
E {x, Y ,  5, 7, J,, a y } .  

(ii) Grassmanian quantum hyperplanes (see also [9-1 I]). Let 

q o  0 0  

R = R 6 = [ !  q l f O  q z - 1 .  (3.12) 

The minimal polynomial is again of second order and 

A i = q  A 2 e - l .  (3.13) 

The relations defining the quantum hyperplane and the differential calculus correspond- 
ing to B,(R6) are given by 

x*=o xy = -ryx (3.14) 

$ = O  57 = qll5 

J,J, = 0 J,J, = -qJ Y =  J 

while for B2(R6) we get 

y 2 = o  X Y  = qYx 

5'=0 57 = -175 
J y J y  = 0 d,J, = tJ,J,, 

The remaining relations for both the hyperplanes are 

Aix5 = -q& 

A ~ X V  = ( A t  - 4 )  - q W  

AY? = f t ) ~  

A & =  -5Y 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

J ~ = l + A 7 ' [ ( f - q ) y J , - q X d ~ ]  JY = -A;'YJ,  
(3.21) 

3 9  =-A:' I qtxJ, J,y=l+h,'tyd, 

d,c= -A8q-'@, a,?) = -Ajq-'f-'7dx 

J,5 = - A i 5 J ,  J,? = A i [ ( f ~ ' - ~ ~ ' ) ~ J , + l ~ ' t ) d y ] .  
(3.22) 

Monomials that form bases in the algebras Qi(R6) ,  i =  1 ,  2 given by (3.14) respec- 
tively (3.17) are y"x" where n E No, m E {0, 1) for A ,  and n E (0, I}, m E No for A 2 .  The 
derivative rules for the basis monomials are 

Jy'x" =y"x"- ' ( -A\ , ) -"G,( -q /h , )  

J Y Y  "xm =y"-'x"G,(r/Aj).  
(3.23) 

Again, R(q,  f ) - '  = PR(q-' ,  f - ' ) P  so that the formulae for the alternative differential 

(iii) The light-cone quantum hyperplanes. Let 
calculi can be obtained by q + I /  q, t + 1 /  r ,  and the reverse of factors in products. 

1 + t  0 0 r 

r, r Z 0 .  (3.24) R = R 2 = [  p, I S  s2=1+t2 

r-' 0 0 1 - 1  
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(See also [ 1 2 ] . )  
The minimal polynomial for R,  is of order m = 2 and 

A ,  = A +  = 1 + s  A , =  A-  = 1 -S.  (3.25) 
The quantum hyperplanes Q*(R2) corresponding to B ,  = R2/AT are given by 

( I *  s ) x 2 +  r y 2 =  0 (3.26) 

t2( s) + rqz=o S ( l ?  F 15) = 0 (3.27) 
r ( l *  s)J,J, +J,J, = 0 S(J,J, *J,J,) = 0 (3.28) 
- h,xc= # x ( l +  t ) +  rqy 

(3.29) - A , X q  = ( y  + s q x  

d+ = - A ; * ( S X J ~ +  ryJ,) J , y = I - A ; ' [ X J , + ( I - I ) y J , ]  (3.30) 

(3.31) 

Note that R-' = -i?R(-r, -s, -I). Therefore, the alternative differential calculi 
given by E - ' ,  C', F-' are the same as  above up to i + -i, s + -s, r + -r. 

Due to (3.26), functions on the hyperplanes, or more precisely elements of the 
algebras Ql t (R2) ,  are linear combinations of X" and x"y where ~ E N ~ = { O ,  I, 2 , .  . .}. 
Derivatives of these monomials are rather complicated and I was not able to derive 

s( xy * y x )  = 0 

and the differential calculi on Q + ( R 2 )  are defined by the relations 

- A,yq = qy( 1 - I )  + r-'.$x 
- LY.$ = s t y  + ?x 

J s =  1 - A ; ' [ ( l + t ) x J , + y J , ]  Jxy = -A-' + ( syJ ,+r- 'xJ , )  

- A d , . $ =  ( I  - t ) i $ J , + q J ,  A&q = sqa, + ' - ' [ a y  
A,a,.$ = sea, + r q J ,  - A T J y q  = [ J , + q J , ( l  + I ) .  

the general formulae. 

ones is given by the matrix 
(iv) Another interesting example that in a way is 

/ I  0 0 o \  

mixture of the two preceding 

I # 0. (3.32) 

The minimal polynomial condition for R,  is 
( R 3 +  t ) ( R z  - 1)  = 0. (3.33) 

X 2 =  (1  -A,)y' A,xy = -sIyX (3.34) 
( '= ( I  - i , ) q 2  X& = -s t95  (3.35) 
;\iJxJ,u = sIJ,J, ( X j - i ) ~ , ~ , = ~ , a ,  (3.36) 
A ; x ~  = - ( X  

(3.37) Aixq = & ( I  - 1) - slqx 

J s =  l + A , ' [ l y J , - ( X J , + y J , ) ]  J ~ V =  - A ; ' ( S Y J , + X J , ~ )  
J,X= -A ; 'S IXJ ,  J,Y = 1 + A;' I ~ J ,  (3.38) 

a,(= - A ; f J ,  axv - - - A ~ ~ - ' ( s ~ J ~ + ~ J ~ )  

The quantum hyperplanes and the differential calculi are given by 

.\,Yv = rw - 6x 
A ~ Y ~ = - s ~ Y  

J,( = -Ais@, J, ,q  = A j l - ' [ ( l - l ) g J , ~ + q J , ]  (3.39) 

where A ,  = A, = I ,  A ,  = A ,  = -1. 

One can see from (3.34) that Q , ( R , )  is the quantum hyperplane with a Grassmanian 
variable and the hyperplane Q 2 ( R 3 )  is of the light-cone type (for I #  -1). However, 
the differential calculi are substantially different from those in examples (ii) and (iii). 
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Monomials that form a convenient basis in the algebra given by (3.35) are y" and 
y"x. The derivative rules for the basis monomials are in this case 

a g "  = -~"-~x(-s /A~)"S, ( t ,  A i )  

d s " x = y " ( - s / h j ) " [ l  -(1 - A j ) S n ( f ,  A ; ) ]  
(3.40) 

dyy" =Y"- 'G. ( I /AJ a YY " x = y " - ' x G n ( f / h j )  
..,ha-- 
W,ICLC 

S,(t, Aj):=A?(A;t-t2)-'[G.(t)-G,(t2/Aj)]. (3.41) 

In particular, 

S,(t, A I  = 1 )  = (1 - 1 " ) ( 1 -  t"- ' ) ( l -  1 ) - ' ( 1 +  t)-' 

&(t, A > =  -?) = ( 1  - f 2 ) - ' { f " [ l  - ( - l )"]-  f"+'[l -(-1)"+']-Zf}/2. 

(v) Let 

0 0 0 1  

O O t O  
R=R9- (  O f 0 0  ] f 2 # l , 0 .  

1 0 0 0 ,  

(3.42) 

The minimal polynomial for R9 is of the third degree and 

A , = l  A 2 = - l  A , = l .  (3.43) 

The quantum hyperplanes corresponding to these eigenvalues are 

(3.44) 

(3.45) 

There are also other quantum hyperplanes defined by this matrix R but one cannot 
define the differential calculi on them by the above given construction because the 
matrices B that correspond to these spaces are not of the form (2.2). The differential 
calculi for the spaces (3.44) and (3.45) are given by 

YTJ - A T ' @  
(3.46) 

x t  = -AT '  TJY 

q = -AT' t6Y y . $ = - h T ' f ~ x  

and 

f 2 = * 1 2  111 = 75 = O  
J,J,*J,J,=O. 

for the hyperplanes Qbl (R9)  or 
f 2 = $ = 0  

J,J,.=d,J,=O 

for the space Q,(R,). 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 
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The derivative rules for monomials X" and y" forming the basis in Q , ( R , )  are 

(3.53) 

We have not derived the derivative rules for the monomials x"(yx)"y', n, mENo. 

(vi) The minimal polynomial with multiple root. Let 
rE {l, 0) that form the bases in Q*,(R, ) .  

1 0 0 0  

o s 0 0  
1 0 0 1  

R = R - - (  o o s o  1 s 2 = l  
(3.54) 

The minimal polynomial of R, is 

(R , -  I ) ~ ( R , +  1)  = 0. (3.55) 

The root A ,  = 1 is multiple and therefore the matrix E - B , ( R )  is nilpotent. The quantum 
hyperplanes corresponding to  A i  = * 1 are 

(3.56j 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

and, besides these relations, it holds that 

p = 0  #v -svc = 0 ayay = o (3.61) 

on Qt l (R7)  and 

. $ 2 = $ = 0  51, +m# = 0 d,J,.-sd,,d, = 0  (3.62) 

on Q- , (R7) .  
We have not derived the derivative rules for the monomials y " " x y " ' x . .  , y " ~ - ~ x y " ~ ,  

The derivative rules for monomials x"y" forming the basis in Q - I ( R 7 )  are 
K ,  no,  nK E No, n , ,  , . . nK -, E N  that form the basis in Q+,( R, ) .  

a,x"y" = s"mx"y"-'. (3.63) 

Note that even though Q - , ( R 7 )  is a hyperplane with (anti) commuting variables 

(3 "+ly"-' 
d,x"y" = nx"-'y'"+ 

the differential calculus given by R ,  is rather peculiar. 
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4. Conclusions 

We have presented a construction of quantum hyperplanes and differential calculi 
based on R-matrices that solve the YBE. To any eigenvalue of the matrix R correspond 
a quantum hyperplane and a differential calculus. The formulae for matrices B, C, F 
that define their structure are given by (2.1)-(2.3). 

One can see from the examples in section 3 that there may exist several differential 
calculi for one quantum hyperplane because the hyperplane can be defined by various 
matrices R that give different differential calculi. 

A surprising fact is that even though the condition for exterior differential d 2  = 0 
was not required, it is satisfied except for the quantum hyperplanes and differential 
calculi (given by Bj, C,, FJ that correspond to multiple roots Ai of the minimal 
polynomial. 

The last remark concerns the covariance of the differential calculi. It is easy to see 
that, as the matrices B, C are expressed in terms of R, the commutation relations 
concerning only variables or differentials are invariant WRT the transformations 

x'= T ' x J  6" = T;.# (4.1) 

R ' ~ , T * , T ~ ,  = T'~TJ ,R*I~~.  (4.2) 
On the other hand, the covariance of the relations for x, 6 often implies the relations 
of the quantum group [ 5 ] .  A little more complicated is the covariance of the relations 
containing derivatives because they transform by the inverse matrix 

The existence of such an inverse matrix (with non-commuting elements) is not obvious. 
Nevertheless, it is claimed in [3] (remark 16) that any algebra given by (4.3) can be 
extended in such way that the antipod may be defined, i.e. the inverse matrix does 
exist in the extended algebra. 

. .  

where T, are non-commuting elements satisfying relations of the quantum group 

- .  
a :  = a,TJi f i = f T = E .  (4.3) 

A nL-"n...l̂ .l"".n". t.c"""".ru~i".cl.' 

Useful discussions with B lurEo are gratefully acknowledged 
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